libreria specializzata in arte e architettura
english

email/login

password

ricordami su questo computer

invia


Hai dimenticato la tua password?
inserisci il tuo email/login qui sotto e riceverai la password all'indirizzo indicato.

invia

chiudi

ricerca avanzata

Dalla Geometria di Euclide alla Geometria dell'Universo. Geometria Su Sfera, Cilindro, Cono, Pseudosfera

Springer Italia

Milano, 2012; br., pp. XI-195, ill., cm 16x23,5.
(Convergenze).

collana: Convergenze

ISBN: 88-470-2573-7 - EAN13: 9788847025738

Testo in: testo in  italiano  

Peso: 0.44 kg


Il testo confronta con la usuale geometria del piano (euclidea) vari tipi di geometrie che si hanno su superfici note e meno note: geometria sulla sfera, sul cilindro, sul cono e sulla pseudosfera. L'idea di fondo è di giungere alla descrizione "intrinseca" di queste geometrie analizzando che cosa significa l'andare diritto su queste superficie (cioè l'idea di geodetica). Si giunge così a vari tipi di geometrie che si discostano da quella euclidea usuale: geometrie localmente euclidee (su cilindro e cono), geometria ellittica (sulla sfera), geometria iperbolica (sulla pseudosfera). Si scopre che la chiave di volta concettuale che distingue queste diverse geometrie è la nozione di curvatura gaussiana, rispettivamente nulla su piani, cilindri, coni; (costante) positiva sulla sfera e (costante) negativa sulla pseudosfera. In relazione a queste idee matematiche si sviluppano anche vari temi interdisciplinari: si studiano ad esempio le caratteristiche delle carte geografiche che rappresentano la Terra a partire dal problema di determinare la rotta migliore tra due località (porti, aeroporti).

COMPRA ANCHE



OFFERTE E PROMOZIONI
non disponibile - NON ordinabile

design e realizzazione: Vincent Wolterbeek / analisi e programmazione: Rocco Barisci